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:3 During the period of the grant we continued our studies
fi of one-four dimensional classical and quantum lattice and

fg continuous completely integrable systems. Our technique is

{3 based on the method of Backlund transformations and their
(J algebraic, geometric and arithmetic properties. Methods of

ﬁ; Bicklund transformations were successfully used in the study
’{é of Padé approximations. One of our significant achievements
E during the last year was the solution of the key problem on

iﬁ the almost perfectne;s of Padé€ approximations to solutions

3; of linear differential equiations.

9

I. Nonlinear differential equations in dim=nsions one,

—

. >

:f Q. two and three with the complete integrability property.

e -

2: (b

\. - » I3 - L []

> (e The investigators studied three dimensional lattice

N ~ J - ¥ . . .

o . 2and continuous models with the complete integrability property
- . :
? e> using Backlund transformations (BTs) algebra [1], [2], [3],

ﬁ Eég [4]. Our approach, outlined in [1], is based on topological
a properties of symplectic structures and analytic deformations
‘s
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of them) expressad in terms of commutativity and associativity

axioms for S-matrices associated with physical systems. This
topological approach is used for classical and quantum(opera-

tor valued) systems. Commnutativity and associativity axioms

take the form of factorization equations on elements of S-matrices,
and are equivalent to algebraic identities satisfied by

BTs of solutions of corresponding nonlinear differential equ-
ations. These algebraic identities satisfied by BTs take the

form of universal discra2te completely integrable equations

[1], [3). We pres=ant two of these universal equations in

dimensions three and four respectively:

-2) 5 - o + (A=A )m g +
2 3 - hony . poy 3 1 - e =
B, 3, * By B, B; B
(1.1)
+ (X =X )n b { = 0;
172!~ — =
B; By -+ By
A -1 ) n . - 3 )~ .-
({72 O3 3) =5 ma " (X3=20) Oi=2y) S5 5.3
184 ByBj3 1’83 By By
(1.2)
+ (xz-xl)(X4-’3)0E < : qg = = 0,
1 2 4 B3

where J_ is an elementary BT correspondingy to the addition
By

of an apparent singularity at A = Xi to ~, sz2e [1l]. 1In a
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particular case, when completely integrable systems are

assocliated with s=2cond order linear differential (or difference)

spectral problems, ~_ has the form o = W(v, ,...,% )/
/ B B
j-1 . . v _
det(li )i,j =1,....% for k eigenfunctions i correspond

ing to eigenvalues Xi: with BT data B = (xl....,xk);

and a Wronskian (continuous or discrete) of functions
Yl""’wk' Discrete equations (1,1), (l1.2) take the form of
the law of addition, when BTs are represented as translation
operators in the auxiliary space of infinitely many variables
X :n=1,2,... (b%ing Newton's symmetric functions), with

n
- 3
£ n 0 g
BT action oy def]  exp { 1 A = } or

-y

% (X) = o(X + X;). The equations (1.1), (1.2) in this

i
form are equivalent to the laws of addition on curves (of
genus 3£ ®), and are crucial in the complete solution of the
Schottky prdblem of the determination of Jacobian varieties

among all Abelian varieties.

Discrete universal equations (l.1l) generate in various
limits and reductions the Kadomtzev—Petviashvili!(KP) eguation
and various other well known two dimensional completely inte-
grable systems, sese [5]. We have proved in [1], [4] that
all multicomponent (operator) two dimensional completely
integrable systems of isospactral deformation nature are
algebraic reductions of the universal equation (1l.l). Moreover,
particular algebraic reductions of (1.1l) that determined two-
dimensional multicomponent completely integrable systems were
completely described in [4] using infinite dimensional algebras
arising from particular algebras of pseudodifferential opera-
tors. Recently we were able to prove that any multicomponaznt
fratrix, operator) three dimensional systems with the complete

integrability property also arise from systems (1.1) with

i Dt Sl Sl S Sl A Ak An Bl

a® X e w
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?*ﬁ : a particular representation of the algebra of BTs. Thess2
é;é three dimensional matrix systems include any system of non-
!!l linear p.d.e. that arises as a commutativity condition
Sé; [Ll' L2] = 0, where Ll' L2 are linear differential operators
NS , 3 > 2 , ,
3 in Y 5y ° y with matrix (operator) co-
efficients (and are of the first order in —%; S%-)° These

three-dimensional matrix systems include the general monopole
equations for SU(n) or SO(n) cases and, say, the matrix

generalizations of the KP equation derived by the authors in

[61.

The investigators, together with M. Tabor, succeeded
in proving the "Painlevé property" for two dimensional
multicomponent isospectral deformation equations including
various versions of the ma“rix nonlinear Schrodinger,

mdV and KAV equations [7]. This led to the establish-
ment of new completely integrable many particle systems
arising in the pole expansion of meromorphic solutions (as
a particular case of Painlevé's =xpansion). These results
were based on the above mentioned reductions to the univer-
sal equation [4], [7]. The investigation of the Painlevé

property is extended to matrix three dimensional systems.

Simultaneously, we arrived at a solution of a naw algebraic

1

:5? problem of the determination of all exponents of various
ES; branches of the Painlevé expansions of solutions of various
gﬁg flows commiting with a given completely integrable one

':? (already a nontrivial problem for the n-th Kav flow).

AN

Painlevé equations without movable critical points

L _g= Y
RAAA,

were found by the investijators to be of utmost importance
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&A¢ II. Padé type approximation methods and their aooli-
:ﬁi cations in mathematics and mathematical physics.
E:'_::’

3 We are continuing to be active in theoretical and
’?& computer studies of Padé approximations to solutions of
Eﬁg differential equations. Here, under the generic name of Padé-
s type approximations, we understand the approximation of functions
‘gv, having convergent or asymptotic power series expansions,
ﬁgi locally by rational functions. If we consider approximations
f%f in only nonarchimedian metrics ( |t LQ: = me iff f£(x) =
e r aléx - xo)n and m = min (n : an # 03). Then we obtain
E&é classical (multipoint) Padé approximations. Our most spec-
:ﬁ; tacular results during the last y=ar concern Padé:type
‘ ° approximations to solutions of linesar differential equations.
qa Padé—type approximations in this casz2 are directly connected
:;; with the algebraic formalism of the inverss scattering
ﬁ;ﬁ method and Backlund transformations [2], [3], [9]1, [10]. Padée
*; approximations to solutions of linesar differential equations
:Ei are very attractive in view of the possibility of establishing
:::’ rigorously the converganca of this method for multivalued

solutions of differential equations following the monodromy

4} properties. The efficiency of Padé and Padé-type approximations
]\: is also demonstrated by the fact that these ma2thods furnish
_Eﬁ exceptionally good rational approximations to numbers that are
hic values of solutions of differential equations. Sometimas we
5{5 obtain explicit expressions of the continued fraction expan-
%E: sions of thesz numbz=rs. For example, we studied naew, Padé-
e

o type approximations to such functions as 1la(l - 1/z) at
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?Si ) z ~ © and Fé—‘arctg 2 In this way w2 obtain

o z iz
iﬁ; explicit expressions for the best rational approximations to
E;. transcendental numbers such as 1n2 and —5%~— . See the
;is Appendix for explicit three-term recurrences relating rational
f;; approximations to ?gr « These rational approximations give

: outstanding bounds for measures of diophantine approximations

to classical transcendental numders [8], [1l1l], [12].

“ Our main result [14], [15] on the theory of Padé
:{% approximations its=1lf is thz proof of the "almost almost perfectness"” i
Eéi of Padé approximations to solutions of arbitrary (algebraic) }
" differential equations. Our result [14], [15] gives a complete |
a0 solution to Kolchin's problem [13] that for any solution
sﬁéz £(x) of an arbitrary(algebraic) differential equation over
:35 €(x) regular at x = ®, any € > 0 and any arbitrary rational
C function P(x)/Q(x), we have ord  _ _ (f(x) - P(XL/Q(XJ
:ﬁi < (2 + ¢) max {deg(p), deg(Q)} + co(€,f). We want to note
Ef: that C.F. Osgood recently annouinced that he too has an
a?‘ effective solution to Kolchin's problems in the cas= of solutions
j?: of linzar differential equations.
N
|%§ The general theorem [14], [15] of the investigators

- shows that Padé approximatisns are "almost almost p=2rfect.”
-ig To invoke the notion of perfectness we remind of the struc-
Iﬁﬂ ture of the Padé table for f(x). On the (n,m)th placze of i
AR the Padé table for f(x) at x = Xyr we put a rational function J
é:-: pn(x)/Qm(x), such that ord yoy (f(x) = P (x)/0 (x)) > n+m.

5

Then the Padé€ table is divided into squares consisting

of identical rational functions. The standard

(N -.,
Aﬁ A_l.’\! ., p

f:;'l’l
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definition of perfectness(normality) means that each square

is of size one. Unfortunately, this natural definition is

not universally valid (e.g. it is enough to multiply any

f(x) by an appropriate rational function to create squares of
an arbitrarily large size). A more reasonable condition is
almost perfectness (Mahler, 1935[16], [8]) meaning that

squares %p the Padé table have uniformly bounded sizes. This
is equivalent to € = 0 in the solution of the Kolchin problem
above, while the investigators' solution [14], [15] of the
Kolchin problem is only an "almost almost perfectness”
statement. The investigators now have the proof of almost
perfectness for a large class of linear differential equations,
including differential equations of hypergeometric type, and
for arbitrary algebraic functions. The only analytic results

that existed before were those of Arms and Edrei, see [17],
sin x
x

for particular trigonomethric functions such as ¢os x,

using the positivity argument.

Our resalts are generalized to Hermite-Pad? approxima-
tions to s=quences of functimns [14], [15]. Thesa results
and the methods of algebraic geomztry and differential algebra
that we use, were already applied by the investigators [15],
(18] to study the dionphantine approximations of values of

solutions of differential equations. In particular, as a

LY
'.» solution of Lang's problem we proved the best possible "2 + &
35 bound in the measure of irrationality of any value 8 of
I.(‘
:R. E-function £(z) at rational z = y. Here the "2 + 2"

>
‘.'- - -
% bound means that for any < >0, | 3 - R&} > lq | 2=
1 . . .
§§ for rational integers p,q with |q] » qo(e,e An E-function
SN a

« £(z) 1is a function ¢ =7 A i s

2 (z) n=o a! X - with a ¢ o,

................
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satisfying a linear differential equation with rational func-

—

0 tion do=fficients, and 8 = £(r), r # O.
>
RN
N From the point of view of rational approximations,
- our results for e = 0 imply the boundedness of (degrees of)
o elements in the continued fraction expansion of solutions of
,fg linear differential equations. These results and the solution
\ of the Kolchin problem are the first step in the explicit
.Ij determination of rates and domains of convergence of rational
.ﬁb approximations to solutions of arbitrary differential equa-
'-: tiOl’lS )
:j Our work was fasilitated by uss of symbolic algebra
ho
ﬁf manipulation systems SCRATHPAD at IBM and one of the versions
{ SM> (Caltech).
) .:
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Appendix

We presant the explicit expressions for the "good"
T
rational approximations to _‘31?;"’ , and the three-term
recurrence that theses approximations satisfy. The explicit

formulas are specializations of Padéltype approximations to

8 1 . .
J?? arctg ?§=—' at z = 3., In the rational approxima-

. 47
tions X'n/Yn to Y both saquences xn and Yn are

solutions of the following three-term recurrence:

(2.1) Az(n) Z 4ot Al(n) 24 Ao(n) 2, = 0

+2

for Zn = Xn or Zn = Yn: n=0,1l, 2,.ee « The coefficients

Ao(n), Al(n), Az(n) are polynomials of degree 9 in n:

Az(n) = -8°(4n + 7)*(4n + 5)°(4n + 3)-(4n + 1) (2n + 3)°

2

» (n + 2)'(27279n3 + 52164n" + 31511ln + 69246);

Al(n) =3+ (4n + 3)* (4n + 1)-(15484624281n7 +

122518066482n° + 401859218160n° +

7061259042541’14 + 715282318379n3 +

PR Ry




................
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415975459648n2 + 1280211574200 +

16022087856) ;

Ao(n) = <54 <(6n + 5)(6n + 1)(3n + 2)+*(3n + 1)-

\

- (2n '+ 1) (n + 1)-(27279n° 2

+ 134001ln~ + 21767n + 117020).

The initial conditions for the solutions Xh and Yn

of (2.1) are

is

or

3n .
¢ = - (§n) , (-1/2 +.3n) RUS Y
n 3 i 4n - %
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Using the approximation xn/Yn to we obtain

3J3 !
the following bound for the measure of irrationality of |

-4.81.. \

WALIS LY /3i’- P/q | > |q | for all rational

integers p,q; la | 2> q_.
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